
This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

To cite this Article Engelter, Carola , Jackson, Graham E. , Knight, Cheryl L. and Thornton, David A.(1989) 'Complexes of 8-Aminoquinoline. I. The Infrared Spectra of the Ligand, the Tris Complexes of Iron, Cobalt and Nickel Perchlorates and Their ND $_2$ Analogues', Journal of Coordination Chemistry, 20: 3, 289 – 295

To link to this Article: DOI: 10.1080/00958978909408170 URL: http://dx.doi.org/10.1080/00958978909408170

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

COMPLEXES OF 8-AMINOQUINOLINE. I. THE INFRARED SPECTRA OF THE LIGAND, THE TRIS COMPLEXES OF IRON, COBALT AND NICKEL PERCHLORATES AND THEIR ND₂ ANALOGUES

CAROLA ENGELTER, GRAHAM E. JACKSON, CHERYL L. KNIGHT and DAVID A. THORNTON*

Department of Inorganic Chemistry, University of Cape Town, Rondebosch 7700, South Africa

(Received February 22, 1989)

Deuteration of 8-aminoquinoline (aq) at the amino groups and comparison of the infrared spectrum of aq with those of aniline and quinoline enables reliable assignments to be proposed for the amino stretching and bending modes and the internal modes of the aminoquinoline rings. The spectra of the *tris*(8-aminoquinoline) complexes of iron, cobalt and nickel perchlorates have been examined over the range 4000–50 cm⁻¹ with assignments based on the ligand study and the effects of metal ion substitution and deuteration of the nickel complex. The existence of two vM-NH₂ and two vM-N(aq) bands is consistent with facial (*cis-cis*) octahedral coordination about the metal ion.

Keywords: 8-Aminoquinoline, infrared spectra, complexes, isotopic labelling

INTRODUCTION

There have been relatively few vibrational studies of 8-aminoquinoline (aq) and its metal complexes.¹⁻¹⁰ Early reports^{2.4} were restricted to tentative assignments of the internal ligand modes by comparison with the established assignments for aniline and quinoline. Coakley⁵ and Jensen and Nielsen⁶ deuterated the ligand amino groups in order to assign the NH₂ modes but only partial D/H exchange was achieved. The infrared spectra of the structurally simple complexes [M(aq)₃](ClO₄)₂ have not been studied except for brief reference³ to the spectrum of the cobalt(II) complex in which comment was restricted to the perchlorate bands. The *tris* complexes therefore seemed to be a suitable basis for a more general infrared examination of 8-aminoquinoline complexes.

EXPERIMENTAL

The iron and cobalt complexes were prepared and isolated using Schlenk tube techniques and were stored under nitrogen. The isotopic purity and sources of the labelled compounds used were EtOD: 99.8%, Aldrich and D_2O : 99.7%, Merck-Frosst.

^{*} Author for correspondence.

C. ENGELTER et al.

8-Aminoquinoline $-d_2$ (aq- d_2) was prepared by refluxing aq in EtOD for 3 hr. After removal of the solvent under reduced pressure, the process was repeated twice. The aq- d_2 was stored over silica gel under reduced pressure to prevent H/D exchange.

Only the cobalt *tris* complex $[Co(aq)_3]^{2+}$ has previously been reported.³ The following general method served for the synthesis of the iron, cobalt and nickel complexes. An ethanolic solution of the hydrated metal perchlorate was added dropwise to an ethanolic solution of the ligand in a 3.5:1 molar ratio. After stirring (5 min), the complex was collected by filtration, washed (ethanol) and dried over silica gel overnight under reduced pressure. The nickel complex is hygroscopic and was stored in a desiccator. This method failed to produce a copper or zinc complex even with a six-fold excess of ligand.

Anal. Calcd. for $[Fe(aq)_3](ClO_4)_2 \cdot \frac{1}{2}H_2O$: C, 46.58; H, 3.62; N, 12.07%. Found: C, 46.70; H, 3.80; N, 12.20%. Calcd. for $[Co(aq)_3](ClO_4)_2 \cdot 2H_2O$: C, 44.65; H, 3.89; N, 11.57%. Found: C, 44.90; H, 3.95; N, 11.35%. Calcd. for $[Ni(aq)_3](ClO_4)_2 \cdot H_2O$: C, 45.80; H, 3.70; N, 11.87%. Found: C, 45.40; H, 3.70; N, 11.65%. Calcd. for $[Ni(aq-d_2)_3](ClO_4)_2 \cdot 2D_2O$: C, 45.03; H, 3.92; N, 11.67%. Found: C, 45.00; H, 3.85; N, 11.45%.

The mid-IR spectra were determined on Nujol mulls $(4000-180 \text{ cm}^{-1})$ and as hexachlorobutadiene mulls $(3500-2000 \text{ and } 1500-1300 \text{ cm}^{-1})$ between CsI discs on a Perkin-Elmer 983 spectrophotometer. The far-IR spectra $(500-50 \text{ cm}^{-1})$ were determined on Nujol mulls between polyethylene plates on a Digilab FTS 16B/D interferometer.

RESULTS AND DISCUSSIONS

The IR Spectrum of 8-Aminoquinoline

To a first approximation, the IR spectrum of aq may be regarded as a composite of those of aniline and quinoline. Comprehensive studies of the IR spectra of the latter two molecules^{11,12} simplifies the comparison (Table I).

Aniline	Assignment ¹¹	Quinoline	Assignment ¹²	8-Amino- quinoline & (d ₂ -shift)	Assignment			
3440	vN-H asym			3450°(867)	vN–H asym			
3360	vN-H sym			33495(904)	vN-H sym			
1618	NH ₂ scissor	1619		1615°(5)	(v ring			
1600	(-	1593		1599(26)	$\{+NH_2 \text{ scissor}\}$			
1586	}			1590sh(2)	v ring			
	<pre></pre>	1571		1566(414)	$v ring + \delta NH_2$			
1500		1500 🗸	v ring	1505(3)	1			
1469		1469	÷	1470(1)	- {			
		1431		1426(2)	/ v ring			
1382	comb.	1392		1394(4)	۲. T			
		1371		1368(+4)				
1330	v ring			$1335^{a}(+1)$	(

TABLE I

Infrared band assignments for 8-hydroxyquinoline based on the effects of deuteration and comparison with aniline and quinoline.

Aniline	Assignment ¹¹	Quinoline	Assignment ¹²	8-Amino- quinoline & (d ₂ -shift)	Assignment
1278	v ring + vC-N			1279(+30)	v ring + vC-N
12/0		1256	,	1239(5)	(
		1216	(1207(3)	ζ _{αC-H}
1175	(1192	αC-H	1183(+7)	l
1118	αC-H	1118		1125(+7,19)	$\alpha C-H + \tau NH_{2}$
•••••	{	1095		1094(2,8)	(aC-H
1028	(1031		1037(7)	1
	•	1013	v ring	1021(-)	v ring
984	¹³ C ¹² C ₅ H ₅ .NH ₂	980	(γC-H	985(0)	(
970	(970 •	ζ.	962(0)) үС-Н
960	ζγС-н	939	C	942(0)	$\left\{ \right\}$
880				889(3)	
	1	867	γ ring	863(0,12)	$\gamma ring + \omega NH_2$
832	үС-Н			819(0)	үС-Н
		786	үС-Н	789(0)	γC–H + v ring
	1	785	v ring		
		760	l	760°(1)	v ring
761	(741	үС–Н	751(3)	үС–Н
691	∫ γ ring			703 ^r (1,9)	$\gamma \operatorname{ring} + \rho \operatorname{NH}_2$
618	1	628	γ ring	641(0)	γ ring
	C C			577(+4,9)	ρNH2
527	∫ ρNH₂	521	\$	545(7)	s v ring + ρNH ₂
501	l	(505)	v ring	509(+8)	1
490	$2 \times NH_2$ torsion	479	1	484(0)	(
		415		436(0)	ζ γ ring
390	γ ring	392		400(2)	(
		<	γ ring	297(-)	
)		267(9)	γC–N
		193		186(1)	∫ ^{γ ring}
		178	•	163(5)	<u>}</u>
				113(1)	$\int NH_2$ torsion
				77(0)	5
				68(0)	C

TABLE I (continued)

^a Previously reported at 3440 cm⁻¹ (ref. 4) and 3450 cm⁻¹ (ref. 5) and assigned to vN-H. ^b Previously reported at 3340 cm⁻¹ (ref. 4) and at 3345 cm⁻¹ (ref. 5) and at 3340 cm⁻¹ (ref. 6) and assigned to vN-H. ^c Previously reported at 1619 cm⁻¹ and assigned to NH₂ scissor (ref. 6). ^d Previously reported at 1336 cm⁻¹ (ref. 2), 1330 cm⁻¹ (ref. 4) and 1339 cm⁻¹ (ref. 6) and assigned to vC-N. ^c Previously reported at 760 cm⁻¹ and assigned to ρ NH₂ (ref. 4). ^f Previously reported at 704 cm⁻¹ and assigned to ρ NH₂ (ref. 6).

The N-H stretching bands occur within the normal range $3500-3000 \text{ cm}^{-1}$ and shift to the $2590-2440 \text{ cm}^{-1}$ region on deuteration. The observed v^D/v^H ratio has the normal value of 0.73.¹³ Residual vN-H bands remain in the deuterated spectrum as is normally observed even at high levels of deuteration. The $1700-1500 \text{ cm}^{-1}$ region comprises the v ring and NH₂ scissoring modes. The intense band at 1566 cm^{-1} is by far the most *d*-sensitive band; the magnitude of its d_2 -shift (414 cm⁻¹) is close to the theoretical shift of a vibrationally pure NH₂ scissoring mode.¹³

C. ENGELTER et al.

Previous workers^{2,4,6} have assigned the band at 1330 cm⁻¹ to vC–N. We assign this band to vring because it is found to be unaffected by deuteration and is at the same position as the vring mode of aniline.¹¹ We have assigned the *d*-sensitive band at 1279 cm⁻¹ to vC–N, possibly coupled with the ring stretch. The unexpected upward shift of this band to 1309 cm⁻¹ in aq-d₂ is similar to that observed for the corresponding band in aniline-d₂¹¹. The NH₂ twisting mode yields a *d*-sensitive band at 1125 cm⁻¹. The possibility exists that it is coupled with an α C–H vibration, the band at 1118 cm⁻¹ in quinoline having been so assigned.¹² Similarly, the band at 863 cm⁻¹ is assigned to the NH₂ wag coupled with γ ring.

The band at 760 cm⁻¹, previously assigned to a NH_2 rocking mode⁴ is *d*insensitive. We have therefore assigned this band to vring. In agreement with Jensen and Nielsen⁶, we have assigned the *d*-sensitive band at 703 cm⁻¹ to ρNH_2 coupled with γ ring. Several bands in the 500 cm⁻¹ region are also *d*-sensitive and therefore qualify for assignment to ρNH_2 , while the previously unassigned peak at 267 cm⁻¹, shifting 9 cm⁻¹ to lower wavenumber on deuteration, is attributed to γC -N by analogy with the γC -O band at 266 cm⁻¹ in the spectrum of 8-hydroxyquinoline.¹⁴

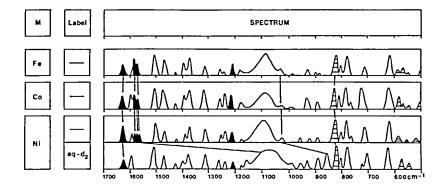


FIGURE 1 IR spectra of the complexes $[M(aq)_3]$ (ClO₄)₂ from 1700-500 cm⁻¹. Solid linked bands: coupled NH₂ scissor; solid unlinked bands: coupled vC-N; linked bands: τNH_2 ; shaded linked bands: coupled ωNH_2 ; shaded unlinked bands: coupled ρNH_2 .

The IR Spectra of the Complexes $[M(aq)_3](ClO_4)_2$.xH₂O

The mid-IR spectra are depicted in Figure 1 and the frequencies, shifts and assignments are reported in Table II. The band patterns of the unlabelled complexes are remarkably similar. The v_3 perchlorate mode exhibits its normal broad and intense character spanning some 150 cm⁻¹, thereby obscuring certain aq modes. The IR-forbidden v_1 band occurs weakly near 930 cm⁻¹. Both bands are, of course, unaffected by deuteration. Possible activation of v_2 (near 460 cm⁻¹) and v_4 (near 620 cm⁻¹) cannot be excluded because of masking by aq bands in these regions.

The internal ligand modes of aq exhibit the normal (generally upward) frequency shift on complexation. The NH_2 stretching and bending modes are readily identified by their shifts on deuteration (of the nickel complex) and the vC–N band is identified at 1214 cm⁻¹, by its *d*-sensitivity of 57 cm⁻¹.

Below 500 cm^{-1} , the spectrum of aq is relatively rich in infrared bands which renders the assignment problem of its complexes difficult (Figure 2). The magnetic

Fe	Co	Ni(aq- d_2 shift)	Assignment
3360	3299	3299(832,879)	vN-H asym
3230	3244	3248(860,913)	vN-H sym
626	1625	1627(7)	$v ring + NH_2 scissor$
1595sh	1593	1594(1)	v ring
1582	1585	1586(429)	$v ring + NH_2$ scissor
		1582(-)	
1565sh	1569	1568(~475)	NH_2 scissor
1505	1504	1506(+1)	(-
1470	1472	1472(+1)	
1426	1426	1426(+2)]
1396	1390	1392(+5)	<pre>ring + C-H modes</pre>
1374	1375	1375(+4)	Ĵ
1314	1315	1316(0)	· · · · · · · · · · · · · · · · · · ·
1257	1259	1259(+2)	l
1239	1239	1239(0)	N N
1209	1212	1214(7,57)	$\alpha C-H + \nu C-N$
1179	1176	1177(+1)	αC-H
1091	1086	1091(+2)	v ₃ ClO ₄
1033	1028	1029(170)	τŇH,
986	989	989(0)	γC-H
		959(0)	·
928	930	930)0)	v ₁ ClO ₄
901			(YC-H
892	892	894(4)	{·
825	826	826(5)	$(\gamma C-H + \omega NH)$
808	808	808(0)	$\gamma C-H + v ring$
779	782	782(5)	v ring + ωNH_2
	771	771(6)	γC-H
715	715	717(+1,10)	γ ring + ρ NH,
621	621	621(0)	γring
589	585	587(14)	$\gamma ring + \rho NH_2$
567	570		
550	553	560(14)	$v_{ring} + \rho NH_{2}$
505sh	510sh	520(73)	ρNH,
497	499	499(3)	F 2
466	468	467(+1)	γ ring
446			(' 0
414	418	424(23)	∫vM-NH₂
345	369	381(11)	1
269	264	261(4)	γC–Ν
235	229	(-)	
196	198	209(6)	(vM–N
143	148	156(+2)	{
134	139		∫δL−M−L
81			{
69	72	72(0)	s lattice
65	65	65(-)	1

TABLE II Frequencies (cm⁻¹) and band assignments for the complexes $[M(aq)_3](ClO)_4)_2$.

4

moment of the cobalt complex ($\mu_{eff} = 5.10$ B.M.) is typical of spin-free octahedral Co(II) chelates. The similarity of the infrared band patterns suggests that the iron, cobalt and nickel complexes are isostructural octahedral monomers which could have *facial* (C_3) or *meridional* (C_1) symmetry. The former configuration requires four vM-L modes and the latter, six. Since we observe only four such bands, *facial* symmetry is proposed for these complexes. In this respect, they resemble the *facial* (*cis-cis*) configuration of the complexes [M(ox)₃] (ox = 8-hydroxyquinoline) which also yield four vM-L bands in their IR spectra.¹⁵

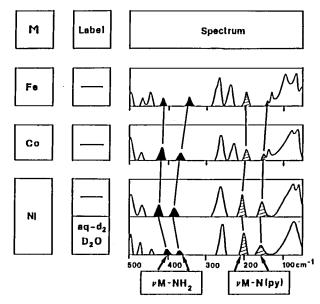


FIGURE 2 Far-IR spectra of the complexes $[M(aq)_3]$ (ClO₄)₂ in the region 500-50 cm⁻¹.

Reference to Figure 2 shows that there are five or six bands in the 430–140 cm⁻¹ region. Two of these (near 420 and 380 cm⁻¹) are significantly sensitive to both metal ion substitution and ND₂-deuteration ($\Delta v = 23$ and 11 cm⁻¹, respectively) and are therefore assigned to vM–NH₂ modes. The bands near 210 and 160 cm⁻¹ are also M-sensitive but relatively unaffected by ND₂-deuteration. These are therefore assigned to vM–N(aq) modes. The very intense band near 260 cm⁻¹ in the spectrum of aq where it has been assigned to the γ C–N mode of the ligand. Since this band is practically insensitive to metal ion substitution, it is assigned to γ C–N in the spectra of the complexes also. Unfortunately, the spectra below 140 cm⁻¹ are not well resolved but one of the δ L–M–L bands may be distinguished in the iron and cobalt complexes at 134 and 139 cm⁻¹, respectively.

ACKNOWLEDGEMENTS

We thank the Foundation for Research Development of the CSIR and the University of Cape Town Research Committee for financial assistance.

REFERENCES

- 1. C.M. Harris and E.D. McKenzie, J. Inorg. Nucl. Chem., 29, 1047 (1967).
- 2. J.C. Fanning and L.T. Taylor, J. Inorg. Nucl. Chem., 27, 2217 (1965).
- 3. R. Nast, H. Bier and J. Gremm, Z. anorg. allg. Chemie, 309, 289 (1961).
- 4. J. Casabó, J. Ribas and J. Bartroli, Rev. Chem. Min., 13, 149 (1976).
- 5. M.P. Coakley, Appl. Spectrosc., 18, 149 (1964).
- 6. K.A. Jensen and P.H. Nielsen, Acta Chem. Scand., 18, 1 (1964).
- 7. M. Izquierdo, J. Casabó, C. Díaz and J. Ribas, Polyhedron, 2, 529 (1983).
- 8. J. Casabó, M. Izquierdo, J. Ribas and C. Díaz, Transition Met. Chem., 8, 110 (1983).
- 9. J.R. Durig, R. Layton, D.W. Sink and B.R. Mitchell, Spectrochim. Acta, 21, 1367 (1965).
- P.H. Nielsen and O. Dahl, Acta Chem. Scand., 20, 1113 (1966).
 J.C. Evans, Spectrochim. Acta, 16, 428 (1960).
- 12. G.M. Watkins, Ph.D. Thesis, University of Cape Town, 1988.
- 13. S. Pinchas and I. Laulicht, Infrared Spectra of Labelled Compounds, (Academic Press, London, 1971).
- B. Marchon, L. Bokobza and G. Cote, Spectrochim. Acta, 42A, 537 (1986). 14.
- 15. C. Engelter, G.E. Jackson, C.L. Knight and D.A. Thornton, J. Mol. Struct., in press.